Atomically Dispersed Nickel Anchored on a Nitrogen‐Doped Carbon/TiO <sub>2</sub> Composite for Efficient and Selective Photocatalytic CH <sub>4</sub> Oxidation to Oxygenates

نویسندگان

چکیده

Direct photocatalytic oxidation of methane to liquid oxygenated products is a sustainable strategy for valorization at room temperature. However, in this reaction, noble metals are generally needed function as cocatalysts obtaining adequate activity and selectivity. Here, we report atomically dispersed nickel anchored on nitrogen-doped carbon/TiO2 composite (Ni−NC/TiO2) highly active selective catalyst photooxidation CH4 C1 oxygenates with O2 the only oxidant. Ni−NC/TiO2 exhibits yield 198 μmol 4 h selectivity 93 %, exceeding that most reported high-performance photocatalysts. Experimental theoretical investigations suggest single-atom Ni−NC sites not enhance transfer photogenerated electrons from TiO2 isolated Ni atoms but also dominantly facilitate activation form key intermediate ⋅OOH radicals, which synergistically lead substantial enhancement both

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks,...

متن کامل

Nanosized mesoporous composite PW12-APTES@KIT-6: An efficient heterogeneous catalyst for selective oxidation of sulfides to sulfoxides and sulfones

Surface of mesostructured silica, KIT-6, was modified by grafting 3-aminopropyl-triethoxysilane (APTES) to have the positive charge, and thus, to provide sites for the immobilization of H3PW12O40 (PW12).  This modified-nanosized mesoporous silica (PW12-APTES@ KIT-6) was characterized by FTIR, XRD, BET and TEM. The oxidation of sulfides occurs effectively and selectively with H2O2 as the oxidant...

متن کامل

Nanosized mesoporous composite PW12-APTES@KIT-6: An efficient heterogeneous catalyst for selective oxidation of sulfides to sulfoxides and sulfones

Surface of mesostructured silica, KIT-6, was modified by grafting 3-aminopropyl-triethoxysilane (APTES) to have the positive charge, and thus, to provide sites for the immobilization of H3PW12O40 (PW12).  This modified-nanosized mesoporous silica (PW12-APTES@ KIT-6) was characterized by FTIR, XRD, BET and TEM. The oxidation of sulfides occurs effectively and selectively with H2O2 as the oxidant...

متن کامل

A cheap and an efficient electrode for electrocatalytic oxidation of methanol with nickel particles dispersed into sodium dodecyl sulfate modified carbon paste electrode

A sodium dodecyl sulfate modified carbon paste electrode (SDS/CPE) was developed in this work based on the surface modification method. The modified electrode was prepared by immersing SDS/CPE in a nickel nitrate solution. This electrode showed a strong accumulation ability toward nickel ions. Then modified electrode was conditioned by potential recycling in a potential range of 0.2–0.8 V (vs. ...

متن کامل

nanosized mesoporous composite pw12-aptes@kit-6: an efficient heterogeneous catalyst for selective oxidation of sulfides to sulfoxides and sulfones

surface of mesostructured silica, kit-6, was modified by grafting 3-aminopropyl-triethoxysilane (aptes) to have the positive charge, and thus, to provide sites for the immobilization of h3pw12o40 (pw12).  this modified-nanosized mesoporous silica (pw12-aptes@ kit-6) was characterized by ftir, xrd, bet and tem. the oxidation of sulfides occurs effectively and selectively with h2o2 as the oxidant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Angewandte Chemie

سال: 2022

ISSN: ['1521-3773', '1433-7851', '0570-0833']

DOI: https://doi.org/10.1002/ange.202215057